If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4z^2-7z-5=0
a = 4; b = -7; c = -5;
Δ = b2-4ac
Δ = -72-4·4·(-5)
Δ = 129
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-\sqrt{129}}{2*4}=\frac{7-\sqrt{129}}{8} $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+\sqrt{129}}{2*4}=\frac{7+\sqrt{129}}{8} $
| 8m-5=2m-11 | | 14x-24=28-70 | | 5x+12=18+7x | | 10d+25(30-d)=570 | | 2x=10=0 | | 4+x=3x-21 | | 3c-8=1-3c | | -8n+4(1+5n)=6n+-14 | | t^2+16t+11=0 | | 2x+6=5x= | | Y-2=0.3(x-3) | | Y-6=0.8(x-4.5) | | 11+4x=x-10 | | 1.5+1.3y=-0.8y-0.4 | | -15-p+8=24 | | 0=2x^2+3x-10 | | 0,2-0,3x+3,1=x-3,5 | | (2f+6)-2=8+2f | | (2r-5=) | | 7a-4+2a=3a-28 | | 3b+18=5b-1 | | 2x-30+5x-10=180 | | 80-5t^2=0 | | 7y-1=(2y+6)-2 | | -6x-20-2x-10=180 | | 5x-9/4=2x+3/5 | | (2x-4)+3=2x-1 | | 5x-10+2x-30=180 | | 36x-19=17 | | 31=v-25 | | 12(27)=(x+8)(x+8) | | 5t-8=3t+12= |